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Abstract: Direct lithiation at the C-& atom of I-phenylsulfinyl substituted glucals 4a,b can
be readily performed with LDA as indicated by reactions with different C-electrophiles.
Phenylsulfinyl group removal takes place in the aldehyde reaction products by simple ther-
mal treatment affording directly 2-alkylidene substituted gluconolactones.

Direct lithiation at vinylic positions of functionally substituted acrylates
has become a versatile tool in organic synthesis because it is compatible with

2)

a variety of other substituents . This approach to the generation of highly

reactive intermediates bearing various functional groups was recently also ex-
tended to direct B-lithiation of a-alkoxy acrylates 1 3). Replacement of the
carboxylate group by a phenylsulfinyl group as the promoting moiety for B-lithi-
ation (see compound 2) should greatly extend the versatility of this methodolo-
gy because substitution of this group is easily achieved. This is exhibited in

the synthesis of C-2 branched sugars derived from glucose (Schemes 1 and 2)4).
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The required glucal derivatives were obtained from phenyl tetra-O-benzyl-1-
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thio-B-D-glucopyranoside . Oxidation with m-chloroperbenzoic acid (MCPBA) af-

forded sulfoxides ;g,g, which differ in chirality at the sulfur atom. These com-
pounds are also of interest for C-1 lithiation of carbohydrates 6>. Treatment
of compounds 3a and 3b with lithium diisopropylamide (LDA) as a base provided
the 1-phenylsulfinyl glucals 4a and 4b, respectively, in high yields. 1H-NMR
data favor the half chair conformation with the hydrogen atom at C-3 in an
ideal position for proton removal. However, addition of LDA as a base led
cleanly to vinylic lithiation at C-2 [generating intermediates 4a-(a) and 4b-
(A)] as shown by addition of various electrophiles. Reaction with methyl chlo-
roformate furnished compounds 5a and gg with a methoxycarbonyl substituent at
carbon atom C-2. Removal of the phenylsulfinyl group was accomplished in high
yield by treatment with Raney-Nickel (Ra~Ni) affording from both precursors
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compound 10. For structural assignment compound 10 was debenzylated and fully

acetylated to give compound 11 7’8).

Reaction of the intermediates 4a,b-(A)with
various aldehydes gave mainly mixtures of diastereoisomers; in some examples
high diastereoselectivities were obtained (see Table 1). A structural assign-
ment and a rationalisation of the results has not yet been possible. Reductive
phenylsulfinyl group removal with Ra-Ni in THF afforded C-2 o-hydroxyalkyl sub-

stituted glucals 63,B and 8A,B (for details, see Table 2).

Convenient 2-alkylidene lactone formation was achieved by formal thermal hy-

droxy group migration to C-1 and subsequent phenylsulfenic acid elimination
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Table 1. Reaction of Compounds 4a,b with LDA and Aldehydes RZ—CHO.
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6ba—Sba; 6bb-Ibb

R2 Comp. TLC Yield Ratio Comp. TLC Yield Ratio
from 4a PE/EA®,R, [%] aa:ab from 4b|PE/EA®,R, [%] ba:bb
Me ggg 1¢1, 0.41 48 1:1 ggg 1:1, 0.30 89 4:3
6ab 1:1, 0.37 6bb 1:1, 0.23
Bt 7aP 2:1, 0.26 52 " 7pa 1:1, 0.50 4, 4.,
7bb 1:1, 0.39
o 8aa 3:1, 0.30 g ,,,, 8ba 2:1, 0.30 ., 1:1
8ab 3:1, 0.28 8bb 2:1, 0.28
Me |=—- ===
0 07:—-Me 2aa 1:1CIO'26 43 1:1 2ba 1:1, 0.69 49 9:1
Mesy 0 O 9ab 1:1%,0.21 9bb 1:1, 0.65
Me

? petroleum ether (40—7OOC)/ethyl acetate; b only one isomer obtained; ¢ petro-
leum ether (40-70°C)/ether.
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(Scheme 2). For instance, irrespective of the diastereoisomer 6aa, 6ab, 6ba or
6bb used, heating in DMSO at 16OOC afforded the 2-ethylidene substituted gluco-
nolactone 6-(E) with E-~configuration (> 90 %). Similarly from compounds 8aa,
8ab, 8ba, and 8bb the 2-benzylidene gluconolactone 8-(E) was formed (> 90 %).
This reaction could also be catalyzed by p—toluénesulfonic acid treatment. For
instance, from compounds 6aa and 6ab a 7:71-mixture of the E- and Z-isomers §-
(E) and 6-(Z) was then obtained (81 %). The structural assignment of these com-
pounds was based on the correlation of the shift of the vinylic protons with

known values 8'9).

Hydrogenation of the ethylidene lactone 6-(E) with palladium on carbon as a
catalyst occurred exclusively from the less hindered side. Concomitant debenzyl-
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Table 2. Reaction of Compounds 6aa, ab, ba, bb and 8aa, ab, ba, bb, with Raney-
Nickel
Starting  Yield Product  TLC [c]g% TH-NMR (cpcly) 6
Material [%] PE/EA%,R,  (c=1, CHCl,) -CH= CHOH
6aa 83 68  2:1, 0.62 + 4.9 6.53(s)  4.30-4.37(m)
gbb 85
gab 79 68 2:1, 0.51 - 4.3 6.49(s)  4.20-4.28(m)
ébb 77
Saa 73 8a  3:1, 0.57 +40.0 6.61(s) 5.20 (d)
8ba 77
8ab 65 8B
8bb 65 g2 3:1, 0.42 +19.8 6.29(s)  5.31 (d)

@ petroleum ether (40—700C)/ethylacetate
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ation and subsequent acetylation afforded the 2-ethyl-branched lactone 6- (M)
8) -

with "mannd-configuration. The 1H-—NMR data support a twist-boat conforma-

tion with the carbon substituents in an equatorial position. This was also

found for the structurally related rhamnonolactones 10).
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