Tetrahedron Letters, Vol.27, No.34, pp 4007-4010, 1986 Printed in Great Britain 0040-4039/86 \$3.00 + .00 Pergamon Journals Ltd.

DIRECT LITHIATION OF GLYCALS. SYNTHESIS OF C-2 BRANCHED SUGARS $^{1)}$

Richard R. Schmidt^{*} and Jürgen Kast Fakultät Chemie, Universität Konstanz D-7750 Konstanz, Germany

Abstract: Direct lithiation at the C-2 atom of 1-phenylsulfinyl substituted glucals <u>4a,b</u> can be readily performed with LDA as indicated by reactions with different C-electrophiles. Phenylsulfinyl group removal takes place in the aldehyde reaction products by simple thermal treatment affording directly 2-alkylidene substituted gluconolactones.

Direct lithiation at vinylic positions of functionally substituted acrylates has become a versatile tool in organic synthesis because it is compatible with a variety of other substituents ²⁾. This approach to the generation of highly reactive intermediates bearing various functional groups was recently also extended to direct β -lithiation of α -alkoxy acrylates $\underline{1}^{3}$. Replacement of the carboxylate group by a phenylsulfinyl group as the promoting moiety for β -lithiation (see compound $\underline{2}$) should greatly extend the versatility of this methodology because substitution of this group is easily achieved. This is exhibited in the synthesis of C-2 branched sugars derived from glucose (Schemes 1 and 2)⁴).

$$RO \xrightarrow{OR^{1}}_{H} O \xrightarrow{1}_{R^{1}} I : R^{1} = H_{L}Ii \qquad RO \xrightarrow{I}_{S} O \xrightarrow{I}_{S} O \xrightarrow{I}_{S} I = H_{L}Ii$$

The required glucal derivatives were obtained from phenyl tetra-O-benzyl-1thio-B-D-glucopyranoside ⁵⁾. Oxidation with m-chloroperbenzoic acid (MCPBA) afforded sulfoxides $\underline{3a}, \underline{b}$, which differ in chirality at the sulfur atom. These compounds are also of interest for C-1 lithiation of carbohydrates ⁶⁾. Treatment of compounds $\underline{3a}$ and $\underline{3b}$ with lithium diisopropylamide (LDA) as a base provided the 1-phenylsulfinyl glucals $\underline{4a}$ and $\underline{4b}$, respectively, in high yields. ¹H-NMR data favor the half chair conformation with the hydrogen atom at C-3 in an ideal position for proton removal. However, addition of LDA as a base led cleanly to vinylic lithiation at C-2 [generating intermediates $\underline{4a}$ -(A) and $\underline{4b}$ -(A)] as shown by addition of various electrophiles. Reaction with methyl chloroformate furnished compounds $\underline{5a}$ and $\underline{5b}$ with a methoxycarbonyl substituent at carbon atom C-2. Removal of the phenylsulfinyl group was accomplished in high yield by treatment with Raney-Nickel (Ra-Ni) affording from both precursors

4007

compound <u>10</u>. For structural assignment compound <u>10</u> was debenzylated and fully acetylated to give compound <u>11</u>^{7,8)}. Reaction of the intermediates <u>4a</u>,<u>b</u>-(A)with various aldehydes gave mainly mixtures of diastereoisomers; in some examples high diastereoselectivities were obtained (see Table 1). A structural assignment and a rationalisation of the results has not yet been possible. Reductive phenylsulfinyl group removal with Ra-Ni in THF afforded C-2 α -hydroxyalkyl substituted glucals <u>6A</u>,<u>B</u> and <u>8A</u>,<u>B</u> (for details, see Table 2).

Convenient 2-alkylidene lactone formation was achieved by formal thermal hydroxy group migration to C-1 and subsequent phenylsulfenic acid elimination

Scheme 1

 $\underbrace{\underbrace{\underline{6aa}}_{i} \underline{ab}}_{\underline{6ba}}, \underbrace{\underbrace{7a}}_{\underline{6bb}}, \underbrace{\underbrace{8aa}_{i} \underline{ab}}_{\underline{6ba}}; \underbrace{\underline{9aa}}_{\underline{ab}}, \underbrace{\underline{ab}}_{\underline{11}}; R = Bzl - 1. Pd/C_{i}H_{2} \\ \underbrace{\underline{11}}_{\underline{11}}: R = Ac \leftarrow 2. Ac_{2}O_{i} Py$

Table 1. Reaction of Compounds $4\underline{a}, \underline{b}$ with LDA and Aldehydes R^2 -CHO.

R ²	Comp. from <u>4a</u>	TLC PE/EA ^a ,R _F	Yield [%]	Ratio <u>aa:ab</u>	Comp. from <u>4b</u>	TLC PE/EA ^a ,R _F	Yield [%]	Ratio ba:bb
Ме	<u>6aa</u> 6ab	1:1, 0.41 1:1, 0.37	48	1:1	6 <u>ba</u> 6 <u>bb</u>	1:1, 0.30 1:1, 0.23	89	4:3
Et	<u>7a</u> ^b	2:1, 0.26	52	b	<u>7ba</u> <u>7bb</u>	1:1, 0.50 1:1, 0.39	44	7:2
Ph	8 <u>888</u> 888	3:1, 0.30 3:1, 0.28	68	1:22	<u>8ba</u> 8 <u>bb</u>	2:1, 0.30 2:1, 0.28	74	1:1
Me We	<u>2aa</u> <u>2ab</u>	1:1 [°] ,0.26 1:1 [°] ,0.21	43	1:1	<u> 9ba</u> <u>9bb</u>	1:1, 0.69 1:1, 0.65	49	9:1

^a Petroleum ether (40-70[°]C)/ethyl acetate; ^b only one isomer obtained; ^c petroleum ether (40-70[°]C)/ether.

4008

(Scheme 2). For instance, irrespective of the diastereoisomer $\underline{6}\underline{a}\underline{a}$, $\underline{6}\underline{a}\underline{b}$, $\underline{6}\underline{b}\underline{a}$ or $\underline{6}\underline{b}\underline{b}$ used, heating in DMSO at 160°C afforded the 2-ethylidene substituted gluconolactone $\underline{6}$ -(E) with E-configuration (> 90 %). Similarly from compounds $\underline{8}\underline{a}\underline{a}$, $\underline{8}\underline{a}\underline{b}$, $\underline{8}\underline{b}\underline{a}$, and $\underline{8}\underline{b}\underline{b}$ the 2-benzylidene gluconolactone $\underline{8}$ -(E) was formed (> 90 %). This reaction could also be catalyzed by p-toluenesulfonic acid treatment. For instance, from compounds $\underline{6}\underline{a}\underline{a}$ and $\underline{6}\underline{a}\underline{b}$ a 7:1-mixture of the E- and Z-isomers $\underline{6}$ -(E) and $\underline{6}$ -(Z) was then obtained (81 %). The structural assignment of these compounds was based on the correlation of the shift of the vinylic protons with known values $\frac{8,9}{}$.

Hydrogenation of the ethylidene lactone $\underline{6}$ -(E) with palladium on carbon as a catalyst occurred exclusively from the less hindered side. Concomitant debenzyl-

Table 2. Reaction of Compounds <u>6aa</u>, <u>ab</u>, <u>ba</u>, <u>bb</u> and <u>8aa</u>, <u>ab</u>, <u>ba</u>, <u>bb</u>, with Raney-Nickel

Starting Material	Yield [%]	Product	TLC PE/EA ^a ,R _F	[a] ²⁰ 578 (c=1, CHCl ₃)	¹ H-NMR (C -CH=	CDC1 ₃) б СНОН
<u>§aa</u> <u>§bb</u>	83 85	<u>6</u> <u>A</u>	2:1, 0.62	+ 4.9	6.53(s)	4.30-4.37(m)
<u>622</u>	79 77	<u>6B</u>	2:1, 0.51	~ 4.3	6.49(s)	4.20-4.28(m)
Saa Sba	73 77	<u>88</u>	3:1, 0.57	+40.0	6.61(s)	5.20 (d)
8 <u>ab</u> 8 <u>bb</u>	65 65	<u>8₿</u>	3:1, 0.42	+19.8	6.29(s)	5.31 (d)

^a Petroleum ether (40-70⁰C)/ethylacetate

ation and subsequent acetylation afforded the 2-ethyl-branched lactone $\underline{6}$ -(M) with "mannd-configuration. The ¹H-NMR data ⁸ support a twist-boat conformation with the carbon substituents in an equatorial position. This was also found for the structurally related rhamnonolactones ¹⁰.

- Vinyl carbanions, Part 31. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. - Part 30, see D. Lafont, M. Hoch, and R.R. Schmidt, J.Carbohydr.Chem., submitted.
- 2) R.R. Schmidt, Bull.Soc.Chim.Belg. <u>92</u>, 825 (1983), R.R. Schmidt in Organic Synthesis an Interdisciplinary Challenge, V th IUPAC SYMPOSIUM, J. Streith, H. Prinzbach, and G. Schill editors, Backwell Scientific Publications, Oxford 1985, p. 281.
- 3) R.R. Schmidt, A. Enhsen, and R. Betz, Synthesis 1985, 160; and references.
- 4) J. Kast, Dissertation Universität Konstanz, 1986.
- 5) C.B. Purves, J.Am.Chem.Soc. <u>51</u>, 3619 (1929); J.W. van Cleve, Carbohydr.Res. <u>70</u>, 161 (1979).
- 6) R.R. Schmidt, Euchem Conference on Synthesis of Low-Molecular Weight Carbohydrates of Biological significance, Stockholm, June 1982; for this aim see also B. Aebischer, J.H. Bieri, R. Prewo, and A. Vasella, Helv.Chim.Acta <u>65</u>, 2251 (1982).
- 7) This procedure afforded in addition 11 % of the 3-deoxy compound.
- 8) ¹H-NMR (250 MHz, CDCl₃, TMS): $\underline{6}$ -(E): δ = 7.37~7.18 (m, 16H, 3C₆H₅, CH=C), 4.63-4.34 (m, 8H, 3 CH₂Ph, 3-H, 5-H), 4.11-4.08 (m, 1H, 4-H), 3.81-3.79 (m, 2H, 6-H, 6'-H), 1.84 (d, 3H, CH₃, J = 7.3 Hz); $\underline{6}$ -(Z): $\delta = 7.33-7.17$ (m, 15H, $3C_{6}H_{5}$), 6.27 (q, 1H, CH = C, J = 7 Hz), 4.60-4.30 (m, 6H, 3 CH₂Ph), 4.2-4.1 (m, 2H, 3-H, 5-H), 3.94 (dd, 1H, 4-H, $J_{3,4} = 3 \text{ Hz}$, $J_{4,5} = 8.2 \text{ Hz}$), 3.73 (m, 2H, 6-H, 6'-H), 2.11 (d, 3H, CH_3 , J = 7 Hz); <u>8</u>-(E): $\delta = 7.99$ (s, 1H, CH=C), 7.42-6.97 (m, 20H, $4C_6H_5$), 4.79 (d, 1H, 3-H, $J_{3.4} = 2.4$ Hz), 4.57, 4.52 (2s, 4H, 2 CH₂Ph), 4.43-4.39 (m, 2H, 5-H, CH-Ph), 4.14-4.10 (m, 2H, 4-H, CH-Ph), 3.83 (d, 2H, 6-H, 6'-H, $J_{5,6} = J_{5,6}$; = 4.5 Hz); $\underline{6}$ -(M): δ = 5.33 (dd, 1H, 3-H), 4.97 (dd, 1H, 4-H), 4.45 (m, 1H, 5-H), 4.34 (dd, 1H, 6-H), 4.23 (dd, 1H, 6'-H), 2.72 (m, 1H, 2-H), 2.14, 2.10 (2s, 9H, 3 CH₃CO), 1.94 (m, 1H, CH_3-CH), 1.47 (m, 1H, CH_3-CH), 1.02 (t, 3H, CH_3), $J_{2,3} = 3.6$ Hz, $J_{3,4} = 1.9$ Hz, $J_{4,5} = 8.9$ Hz, $J_{5,6} = 3.1$ Hz, $J_{5,6'} = 5.8$ Hz, $J_{6,6'} = 1.4$ 11.5 Hz; $\underline{11}$: δ = 7.71 (s, 1H, 1-H), 5.66 (dd, 1H, 3-H, J_{3.4} = 3 Hz, J_{3.5} = 1.5 Hz), 5.16 (dd, 1H, 4-H, $J_{3,4} = J_{4,5} = 3$ Hz), 4.58-4.54 (m, 1H, 5-H), 4.45 (dd, 1H, 6-H, $J_{5.6} = 7.6$ Hz, $J_{6,6'} = 11.9$ Hz), 4.16 (dd, 1H, 6'-H, $J_{5,6!} = 4.2 \text{ Hz}, J_{6,6!} = 11.9 \text{ Hz}$, 2.10, 2.08, 2.06 (3s, 9H, 3 CH₃CO).
- 9) M. Hesse, H. Meier, and B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Thieme Verlag, Stuttgart 1979, p. 185.
- 10) O.J. Varela, A.F. Cirelli, and R.M. de Lederkremer, Carbohydr.Res. <u>79</u>, 219 (1980).

(Received in Germany 30 May 1986)

4010